Bases: DetectionBaseModel
Run inference with a detection model then run inference with a classification model on the detected regions.
Source code in autodistill/core/composed_detection_model.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84 | class ComposedDetectionModel(DetectionBaseModel):
"""
Run inference with a detection model then run inference with a classification model on the detected regions.
"""
def __init__(
self,
detection_model,
classification_model,
set_of_marks=None,
set_of_marks_annotator=DEFAULT_LABEL_ANNOTATOR,
):
self.detection_model = detection_model
self.classification_model = classification_model
self.set_of_marks = set_of_marks
self.set_of_marks_annotator = set_of_marks_annotator
self.ontology = self.classification_model.ontology
def predict(self, image: str) -> sv.Detections:
"""
Run inference with a detection model then run inference with a classification model on the detected regions.
Args:
image: The image to run inference on
annotator: The annotator to use to annotate the image
Returns:
detections (sv.Detections)
"""
opened_image = Image.open(image)
detections = self.detection_model.predict(image)
if self.set_of_marks is not None:
labels = [f"{num}" for num in range(len(detections.xyxy))]
opened_image = np.array(opened_image)
annotated_frame = self.set_of_marks_annotator.annotate(
scene=opened_image, labels=labels, detections=detections
)
opened_image = Image.fromarray(annotated_frame)
opened_image.save("temp.jpeg")
if not hasattr(self.classification_model, "set_of_marks"):
raise Exception(
f"The set classification model does not have a set_of_marks method. Supported models: {SET_OF_MARKS_SUPPORTED_MODELS}"
)
result = self.classification_model.set_of_marks(
input=image, masked_input="temp.jpeg", classes=labels, masks=detections
)
return detections
for pred_idx, bbox in enumerate(detections.xyxy):
# extract region from image
region = opened_image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
# save as tempfile
region.save("temp.jpeg")
result = self.classification_model.predict("temp.jpeg")
if len(result.class_id) == 0:
continue
result = result.get_top_k(1)[0][0]
detections.class_id[pred_idx] = result
return detections
|
predict(image)
Run inference with a detection model then run inference with a classification model on the detected regions.
Parameters:
Name |
Type |
Description |
Default |
image |
str
|
The image to run inference on
|
required
|
annotator |
|
The annotator to use to annotate the image
|
required
|
Returns:
Type |
Description |
sv.Detections
|
detections (sv.Detections)
|
Source code in autodistill/core/composed_detection_model.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84 | def predict(self, image: str) -> sv.Detections:
"""
Run inference with a detection model then run inference with a classification model on the detected regions.
Args:
image: The image to run inference on
annotator: The annotator to use to annotate the image
Returns:
detections (sv.Detections)
"""
opened_image = Image.open(image)
detections = self.detection_model.predict(image)
if self.set_of_marks is not None:
labels = [f"{num}" for num in range(len(detections.xyxy))]
opened_image = np.array(opened_image)
annotated_frame = self.set_of_marks_annotator.annotate(
scene=opened_image, labels=labels, detections=detections
)
opened_image = Image.fromarray(annotated_frame)
opened_image.save("temp.jpeg")
if not hasattr(self.classification_model, "set_of_marks"):
raise Exception(
f"The set classification model does not have a set_of_marks method. Supported models: {SET_OF_MARKS_SUPPORTED_MODELS}"
)
result = self.classification_model.set_of_marks(
input=image, masked_input="temp.jpeg", classes=labels, masks=detections
)
return detections
for pred_idx, bbox in enumerate(detections.xyxy):
# extract region from image
region = opened_image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
# save as tempfile
region.save("temp.jpeg")
result = self.classification_model.predict("temp.jpeg")
if len(result.class_id) == 0:
continue
result = result.get_top_k(1)[0][0]
detections.class_id[pred_idx] = result
return detections
|